Module 1: The Critical Science: Understanding the ABCs of Mechanical Circulatory Support

Divaka Perera MA, MD, FRCP
St. Thomas’ Hospital
King’s College
London, UK
Disclosure

All presenters have a speaker agreement with Maquet

Disclaimer – Indications

The content of this presentation represents a medical practioner’s authorized practice of medicine in the exercise of appropriate medical judgment for the best interest of the patient. Refer to Maquet’s Instructions for Use for current indications, warnings, contraindications, and precautions.
Goals of Mechanical Circulatory Support
A: Myocardial Protection

DEMAND
- Heart Rate
- Contractility
- Afterload

SUPPLY
- Diastolic Pressure (DPTI)
- Microvascular resistance
- Coronary Patency
B: Organ Perfusion

Tissue blood flow

\[F = \frac{MAP}{VR} \]

Local vascular resistance

Mean aortic pressure

\[MAP = CO \times TPR \]

\[CO = HR \times SV \]

Cardiac output

Total peripheral resistance

\[SV = EDV - ESV \]

Heart rate

Stroke volume

Filling pressure

Cardiac compliance

End-diastolic volume

End-systolic volume

Afterload

Contractility
C: Safety and Ease of Use

- Bleeding
- Vascular Complications
- Cerebrovascular Complications

- Availability
- Rapid Initiation
- Familiarity/Specialist Expertise
Circulatory Support Strategies
1. Inotropic Drugs
1. Inotropic Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Action</th>
<th>CO</th>
<th>SVR</th>
<th>MAP</th>
<th>Tissue VR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobutamine</td>
<td>DA β1 β2 agonism</td>
<td>↑↑</td>
<td>↓</td>
<td>↑↓</td>
<td>↓↑</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>A1 β 1/2 agonism</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>α1 β1 / 2 agonism</td>
<td>↑↓</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>Ca++ sensitizer</td>
<td>↑↑</td>
<td>↓↓</td>
<td>↑↓</td>
<td>↓</td>
</tr>
<tr>
<td>Milrinone</td>
<td>PDE inhibitor</td>
<td>↑↑</td>
<td>↓↓</td>
<td>↑↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
2. Intra Aortic Balloon Pump

- **Aortic Pressure**
- **Ventricular Pressure**

\[
\frac{\text{DPTI}}{\text{TTI}} = \frac{\text{DIASTOLIC PRESSURE TIME INDEX}}{\text{TIME TENSION INDEX}} = \frac{\text{SUPPLY INDEX}}{\text{DEMAND INDEX}}
\]
2. Intra Aortic Balloon Pump

![Graph showing pressure changes with and without balloon pump assistance.](image-url)
2. Intra Aortic Balloon Pump

Coronary and Microvascular Physiology During Intra-Aortic Balloon Counterpulsation

JACC CV Interv, April 2014

Kalpa De Silva, MBBS, PhD,* Matthew Lumley, MBBS, BSc,* Balrik Kailcy, BSc,* Jordi Alastra, PhD,† Antoine Guicher, PhD,‡ Kaleab N. Astress, MA, BM, BCh,* Sven Pien, MD, PhD,§ Michael Marber, PhD,* Simon Redwood, MBBS, MD,* Divaka Perera, MA, MD*
2. Intra Aortic Balloon Pump

A **Myocardial protection** by improving myocardial perfusion and reducing oxygen demand, especially when **Autoregulation is dysfunctional or exhausted**
- Persistent ischemia (no reflow)
- Sustained hypotension
- **Critical coronary disease** (local maximal microvascular dilation)

B **No direct effect on tissue perfusion** (indirect effect via myocardial protection)

C **Safe and Easy to use**
Intra-aortic Balloon Pump Trials: Questions, Answers and Unresolved Issues

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Trial</th>
<th>n</th>
<th>Inclusion</th>
<th>Principal End Point</th>
<th>Results (IABP vs Control Group)</th>
<th>Timing of IABP Insertion</th>
<th>Crossover From Control to IABP Group, %</th>
<th>Bleeding Rates</th>
<th>Vascular Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk PCI (excluding shock/AMI)</td>
<td>Perera et al</td>
<td>301</td>
<td>LVEF<30% BCIS Jeopardy score ≥8</td>
<td>Composite of death, AMI, CVA or further revascularization at hospital discharge (capped at 28 days)</td>
<td>15.2% vs 16%; OR, 0.94; 95% CI, 0.51–1.76; P=0.85</td>
<td>Pre-PCI</td>
<td>12.0</td>
<td>19.2% vs 11.3%; OR, 1.86; 95% CI, 0.93–3.79; P=0.06 (at hospital discharge, capped at 28 days)</td>
<td></td>
</tr>
<tr>
<td>AMI-without shock</td>
<td>Ohman et al</td>
<td>182</td>
<td>STE-ACS or NSTE-ACS Cardiac catheterization within 24 h of symptoms</td>
<td>Recurrence of infarct-related artery</td>
<td>8% vs 21%; P<0.03</td>
<td>Post-PCI</td>
<td>8.1</td>
<td>2% vs 1%; 5% vs 2%</td>
<td></td>
</tr>
<tr>
<td>Stone et al</td>
<td>437</td>
<td>STE-ACS or NSTE-ACS-urgent catheterization revealing an occluded vessel with regional LV dysfunction</td>
<td>Composite of death, reinfarction, infarct-related artery reocclusion, stroke, new-onset heart failure, or sustained hypertension</td>
<td>28.9% vs 29.2%; P=0.95</td>
<td>Post-PCI</td>
<td>11.5</td>
<td>36% vs 27%; P=0.05 (in-hospital) 0.5% vs 0.4%; P=1.0 (in-hospital; requiring surgical intervention)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van’t Hof et al</td>
<td>238</td>
<td>STE-ACS Primary PCI</td>
<td>Composite of death, nonfatal reinfarction, stroke or EF<30% at 6 mo</td>
<td>26% vs 26%; P=0.94</td>
<td>Post-PCI</td>
<td>26%</td>
<td>36% vs 32%; P=0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patel et al</td>
<td>337</td>
<td>anterior STE-ACS Primary PCI</td>
<td>Infarct size as a percentage of LV mass</td>
<td>42.1% vs 37.5%; P=0.07</td>
<td>Pre-PCI</td>
<td>30-d mortality</td>
<td>39.7% vs 41.3%; P=0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI complicated by cardiogenic shock</td>
<td>Thiele et al</td>
<td>600</td>
<td>STE-ACS or NSTE-ACS Early PCI Cardiogenic shock</td>
<td>30-d mortality</td>
<td>39.7% vs 41.3%; P=0.69</td>
<td>Operator discretion (86.6% after PCI)</td>
<td>3.3% vs 4.4%; P=0.51 (severe/life-threatening) 4.3% vs 3.4%; P=0.53 (surgical vascular repair)</td>
<td>3.1% vs 1.7%; P=0.49 (at 30 days) 4.3% vs 1.1%; P=0.09 (at 30 days)</td>
<td></td>
</tr>
</tbody>
</table>
3. Impella Recover

Direct LV Unloading by providing continuous (non-pulsatile)

LV -> aortic flow

2.5 L/min: 13F
3.5 L/min: 14F
5.0 L/min: 22F
3. Impella Recover

3. Impella Recover

A: Myocardial protection by decreasing afterload -> reducing oxygen demand (effects on myocardial perfusion??)

B: Improves cardiac output without increasing local vascular resistance -> improves tissue perfusion

C: (Relatively) Safe and Easy to use but increasing risk of vascular complications, especially with larger bore access

2.5 L/min: 13F
3.5 L/min: 14F
5.0 L/min: 22F
4. Extra-Corporeal Pumps

Tandem Heart
- LA -> Ao continuous flow
- Large bore arterial and venous access
- Trans-septal puncture

VA-ECMO/ECLS
- RA -> Ao continuous flow
- Large bore arterial and venous access
4. Extra-corporeal Pumps

- Improve cardiac output and tissue perfusion
 BUT at the cost of increased afterload -> increased MVO₂
 - (?) Effect on coronary flow
 - Vascular risk ++, Complexity ++
Circulatory Support Strategies: Summary

<table>
<thead>
<tr>
<th></th>
<th>Myocardial Protection</th>
<th>Tissue Perfusion</th>
<th>Ease of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply</td>
<td>Demand</td>
<td></td>
</tr>
<tr>
<td>Inotropic drugs</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>IABP</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impella</td>
<td>?</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>VA-ECMO/ECLS</td>
<td>?</td>
<td>-</td>
<td>++ ++ + +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>Desired effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Undesirable effect</td>
</tr>
<tr>
<td>?</td>
<td>Missing/equivocal data</td>
</tr>
</tbody>
</table>
Selecting the right support strategy

Which device for which patient?

Characterise by Broad Diagnostic Category

OR

Individual Physiology?
BCIS-1: Major Outcomes

Perera et al. JAMA 2010; 364(8):867-874

Primary outcome

Per et al., JAMA 2011;305(12):1329-37

Primary endpoint

Infarct size (% LV), modified ITT all patients with CMR data

<table>
<thead>
<tr>
<th></th>
<th>All (N=337)</th>
<th>IABC (N=161)</th>
<th>SOC (N=176)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>275</td>
<td>133</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>39.8</td>
<td>42.1</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>38.8</td>
<td>42.8</td>
<td>36.2</td>
<td></td>
</tr>
</tbody>
</table>

Infarct size (% LV), modified ITT patients prox. LAD and TIMI flow 0/1

<table>
<thead>
<tr>
<th></th>
<th>All (N=337)</th>
<th>IABC (N=161)</th>
<th>SOC (N=176)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>192</td>
<td>93</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>44.4</td>
<td>46.7</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>42.1</td>
<td>45.1</td>
<td>38.6</td>
<td></td>
</tr>
</tbody>
</table>

Co-primary endpoint: 2-sided p=0.025

PROTECT II Interim Results

Thiele et al. NEJM 2012;367:1267-96
In Summary

- Principles and goals behind mechanical circulatory support
- Different support strategies and how they fit in with the principles
- Tailoring the support strategies for the individual patient